
ST7789 Driver for MicroPython

Overview

This is a driver for MicroPython to handle cheap displays based on the ST7789 chip. The
driver is written in C. Firmware is provided for ESP32, ESP32 with SPIRAM, pyboard1.1,
and Raspberry Pi Pico devices.

Working examples

This module was tested on ESP32, STM32 based pyboard v1.1, and the Raspberry Pi Pico.
You have to provide an SPI object and the pin to use for the `dc' input of the screen.

ESP32

import machine
import st7789
spi = machine.SPI(2, baudrate=40000000, polarity=1, sck=machine.Pin(18),
mosi=machine.Pin(23))
display = st7789.ST7789(spi, 240, 240, reset=machine.Pin(4, machine.Pin.OUT),
dc=machine.Pin(2, machine.Pin.OUT))
display.init()
I could not run the display with a baud rate over 40MHZ.

Methods

 st7789.ST7789(spi, width, height, dc, reset, cs, backlight, rotations,
rotation, custom_init, color_order, inversion, options, buffer_size)

Required positional arguments:

o spi spi device
o width display width
o height display height

Required keyword arguments:

o dc sets the pin connected to the display data/command selection input. This
parameter is always required.

Optional keyword arguments:

o reset sets the pin connected to the display's hardware reset input. If the
displays reset pin is tied high, the reset parameter is not required.

o cs sets the pin connected to the displays chip select input. If the display's CS
pin is tied low, the display must be the only device connected to the SPI port.
The display will always be the selected device, and the cs parameter is not
required.

o backlight sets the pin connected to the display's backlight enable input. The
display's backlight input can often be left floating or disconnected as the
backlight on some displays is always powered on and cannot be turned off.

o rotations sets the orientation table. The orientation table is a list of tuples for
each rotation used to set the MADCTL register, display width, display height,
start_x, and start_y values.
Default rotations are included for the following st7789 and st7735 display
sizes:

Display Default Orientation Tables

240x320
[(0x00, 240, 320, 0, 0), (0x60, 320, 240, 0, 0), (0xc0, 240, 320, 0,
0), (0xa0, 320, 240, 0, 0)]

170x320
[(0x00, 170, 320, 35, 0), (0x60, 320, 170, 0, 35), (0xc0, 170, 320,
35, 0), (0xa0, 320, 170, 0, 35)]

240x240
[(0x00, 240, 240, 0, 0), (0x60, 240, 240, 0, 0), (0xc0, 240, 240, 0,
80), (0xa0, 240, 240, 80, 0)]

135x240
[(0x00, 135, 240, 52, 40), (0x60, 240, 135, 40, 53), (0xc0, 135,
240, 53, 40), (0xa0, 240, 135, 40, 52)]

Display Default Orientation Tables

128x160
[(0x00, 128, 160, 0, 0), (0x60, 160, 128, 0, 0), (0xc0, 128, 160, 0,
0), (0xa0, 160, 128, 0, 0)]

128x128
[(0x00, 128, 128, 2, 1), (0x60, 128, 128, 1, 2), (0xc0, 128, 128, 2,
3), (0xa0, 128, 128, 3, 2)]

other [(0x00, width, height, 0, 0)]

You may define as many rotations as you wish.

o rotation sets the display rotation according to the orientation table.

The default orientation table defines four counter-clockwise rotations for
240x320, 240x240, 134x240, 128x160 and 128x128 displays with the LCD's
ribbon cable at the bottom of the display. The default rotation is Portrait (0
degrees).

Index Rotation

0 Portrait (0 degrees)

1 Landscape (90 degrees)

2 Reverse Portrait (180 degrees)

3 Reverse Landscape (270 degrees)

o custom_init List of display configuration commands to send to the display

during the display init(). The list contains tuples with a bytes object, optionally
followed by a delay specified in ms. The first byte of the bytes object contains
the command to send optionally followed by data bytes. See
the examples/configs/t_dongle_s3/tft_config.py file or an example.

o color_order Sets the color order used by the driver (st7789.RGB or
st7789.BGR)

o inversion Sets the display color inversion mode if True, clears the display
color inversion mode if false.

o options Sets driver option flags.

Option Description

st7789.WRAP pixels, lines, polygons, and Hershey text will wrap

Option Description

around the display both horizontally and vertically.

st7789.WRAP_H
pixels, lines, polygons, and Hershey text will wrap
around the display horizontally.

st7789.WRAP_V
pixels, lines, polygons, and Hershey text will wrap
around the display vertically.

o buffer_size If a buffer_size is not specified, a dynamically allocated buffer is
created and freed as needed. If a buffer_size is set, it must be large enough to
contain the largest bitmap, font character, and decoded JPG image used (Rows
* Columns * 2 bytes, 16bit colors in RGB565 notation). Dynamic allocation is
slower and can cause heap fragmentation, so garbage collection (GC) should
be enabled.

 inversion_mode(bool) Sets the display color inversion mode if True, clears the
display color inversion mode if False.

 madctl(value) Returns the current value of the MADCTL register or sets the
MADCTL register if a value is passed to the method. The MADCTL register is used
to set the display rotation and color order.

MADCTL constants

Constant Name Value Description

st7789.MADCTL_MY 0x80 Page Address Order

st7789_MADCTL_MX 0x40 Column Address Order

st7789_MADCTL_MV 0x20 Page/Column Order

st7789_MADCTL_ML 0x10 Line Address Order

st7789_MADCTL_MH 0x04 Display Data Latch Order

st7789_RGB 0x00 RGB color order

st7789_BGR 0x08 BGR color order

MADCTL examples

Orientation
MADCTL Values for RGB color order, for BGR color order add

0x08 to the value.

0x00

0x80 (MADCTL_MY)

0x40 (MADCTL_MX)

0xC0 (MADCTL_MX + MADCTL_MY)

0x20 (MADCTL_MV)

0xA0 (MADCTL_MV + MADCTL_MY)

0x60 (MADCTL_MV + MADCTL_MX)

0xE0 (MADCTL_MV + MADCTL_MX + MADCTL_MY)

 init()

Must be called to initialize the display.

 on()

Turn on the backlight pin if one was defined during init.

 off()

Turn off the backlight pin if one was defined during init.

 sleep_mode(value)

If value is True, cause the display to enter sleep mode, otherwise wake up if value is
False. During sleep display content may not be preserved.

 fill(color)

Fill the display with the specified color.

 pixel(x, y, color)
Set the specified pixel to the given color.

 line(x0, y0, x1, y1, color)
Draws a single line with the provided color from (x0, y0) to (x1, y1).

 hline(x, y, length, color)
Draws a single horizontal line with the provided color and length in pixels. Along
with vline, this is a fast version with fewer SPI calls.

 vline(x, y, length, color)
Draws a single horizontal line with the provided color and length in pixels.

 rect(x, y, width, height, color)
Draws a rectangle from (x, y) with corresponding dimensions

 fill_rect(x, y, width, height, color)
Fill a rectangle starting from (x, y) coordinates

 circle(x, y, r, color)
Draws a circle with radius r centered at the (x, y) coordinates in the given color.

 fill_circle(x, y, r, color)
Draws a filled circle with radius r centered at the (x, y) coordinates in the given color.

 blit_buffer(buffer, x, y, width, height)

Copy bytes() or bytearray() content to the screen internal memory. Note: every color
requires 2 bytes in the array

 text(font, s, x, y[, fg, bg])
Write text to the display using the specified bitmap font with the coordinates as the
upper-left corner of the text. The optional arguments fg and bg can set the foreground
and background colors of the text; otherwise the foreground color defaults to WHITE,
and the background color defaults to BLACK. See the README.md in
the fonts/bitmap directory for example fonts.

 write(bitmap_font, s, x, y[, fg, bg, background_tuple, fill_flag])
Write text to the display using the specified proportional or Monospace bitmap font
module with the coordinates as the upper-left corner of the text. The foreground and
background colors of the text can be set by the optional arguments fg and bg,
otherwise the foreground color defaults to WHITE and the background color defaults
to BLACK.
Transparency can be emulated by providing a background_tuple containing
(bitmap_buffer, width, height). This is the same format used by the jpg_decode
method. See examples/T-DISPLAY/clock/clock.py for an example.
See the README.md in the truetype/fonts directory for example fonts. Returns the
width of the string as printed in pixels. Accepts UTF8 encoded strings.
The font2bitmap utility creates compatible 1 bit per pixel bitmap modules from
Proportional or Monospaced True Type fonts. The character size, foreground,
background colors, and characters in the bitmap module may be specified as

parameters. Use the -h option for details. If you specify a buffer_size during the
display initialization, it must be large enough to hold the widest character (HEIGHT *
MAX_WIDTH * 2).

 write_len(bitap_font, s)

Returns the string's width in pixels if printed in the specified font.

 draw(vector_font, s, x, y[, fg, scale])
Draw text to the display using the specified Hershey vector font with the coordinates
as the lower-left corner of the text. The foreground color of the text can be set by the
optional argument fg. Otherwise the foreground color defaults to WHITE. The size of
the text can be scaled by specifying a scale value. The scale value must be larger
than 0 and can be a floating-point or an integer value. The scale value defaults to 1.0.
See the README.md in the vector/fonts directory, for example fonts and the utils
directory for a font conversion program.

 draw_len(vector_font, s[, scale])

Returns the string's width in pixels if drawn with the specified font.

 jpg(jpg, x, y [, method])
Draw a jpg on the display with the given x and y coordinates as the upper left corner
of the image. jpg may be a string containing a filename or a buffer containing the
JPEG image data.
The memory required to decode and display a JPG can be considerable as a full-screen
320x240 JPG would require at least 3100 bytes for the working area + 320 * 240 * 2
bytes of ram to buffer the image. Jpg images that would require a buffer larger than
available memory can be drawn by passing SLOW for the method. The SLOW method will
draw the image one piece at a time using the Minimum Coded Unit (MCU, typically a
multiple of 8x8) of the image. The default method is FAST.

 jpg_decode(jpg_filename [, x, y, width, height])

Decode a jpg file and return it or a portion of it as a tuple composed of (buffer, width,
height). The buffer is a color565 blit_buffer compatible byte array. The buffer will
require width * height * 2 bytes of memory.

If the optional x, y, width, and height parameters are given, the buffer will only
contain the specified area of the image. See examples/T-DISPLAY/clock/clock.py
examples/T-DISPLAY/toasters_jpg/toasters_jpg.py for examples.

 png(png_filename, x, y [, mask])
Draw a PNG file on the display with upper left corner of the image at the
given x and y coordinates. The PNG will not be clipped it must be able to fit fully on
the display or it will not be drawn. The memory required to decode and display a PNG
can be considerable, as such, the PNG will either be drawn one line at a time, or as
many lines as will fit in the buffer_size if one was specified during the display
initialization. Since the driver does not contain a frame buffer, transparency is not
supported. Providing a True value for the mask parameter will prevent pixels with a
zero alpha channel value from being displayed. Drawing masked PNG's is slower than
non-masked as each visible line segment is drawn separately. For an example of using
a mask, see the alien.py program in the examples/png folder.

 polygon_center(polygon)
Return the center of the polygon as an (x, y) tuple. The polygon should consist of a list
of (x, y) tuples forming a closed convex polygon.

 fill_polygon(polygon, x, y, color[, angle, center_x, center_y])
Draw a filled polygon at the x, and y coordinates in the color given. The polygon may
be rotated angle radians about the center_x and center_y point. The polygon should
consist of a list of (x, y) tuples forming a closed convex polygon.
See the TWATCH-2020 watch.py demo for an example.

 polygon(polygon, x, y, color, angle, center_x, center_y)
Draw a polygon at the x, and y coordinates in the color given. The polygon may be
rotated angle radians about the center_x and center_y point. The polygon should
consist of a list of (x, y) tuples forming a closed convex polygon.
See the T-Display roids.py for an example.

 bounding({status, as_rect})

Bounding enables or disables tracking the display area that has been written to.
Initially, tracking is disabled; pass a True value to enable tracking and False to disable
it. Passing a True or False parameter will reset the current bounding rectangle to
(display_width, display_height, 0, 0).

Returns a four integer tuple containing (min_x, min_y, max_x, max_y) indicating the
area of the display that has been written to since the last clearing.

If as_rect parameter is True, the returned tuple will contain (min_x, min_y, width,
height) values.
See the TWATCH-2020 watch.py demo for an example.

 bitmap(bitmap, x , y [, index])
Draw bitmap using the specified x, y coordinates as the upper-left corner of
the bitmap. The optional index parameter provides a method to select from multiple
bitmaps contained a bitmap module. The index is used to calculate the offset to the
beginning of the desired bitmap using the modules HEIGHT, WIDTH, and BPP
values.
The imgtobitmap.py utility creates compatible 1 to 8 bit per pixel bitmap modules
from image files using the Pillow Python Imaging Library.
The monofont2bitmap.py utility creates compatible 1 to 8 bit per pixel bitmap modules
from Monospaced True Type fonts. See
the inconsolata_16.py, inconsolata_32.py and inconsolata_64.py files in
the examples/lib folder for sample modules and the mono_font.py program for an
example using the generated modules.

The character sizes, bit per pixel, foreground, background colors, and the characters to
include in the bitmap module may be specified as parameters. Use the -h option for
details. Bits per pixel settings larger than one may be used to create antialiased
characters at the expense of memory use. If you specify a buffer_size during the
display initialization, it must be large enough to hold the one character (HEIGHT *
WIDTH * 2).

 width()

Returns the current logical width of the display. (ie a 135x240 display rotated 90
degrees is 240 pixels wide)

 height()

Returns the current logical height of the display. (ie a 135x240 display rotated 90
degrees is 135 pixels high)

 rotation(r)

Set the rotates the logical display in a counter-clockwise direction. 0-Portrait (0
degrees), 1-Landscape (90 degrees), 2-Inverse Portrait (180 degrees), 3-Inverse
Landscape (270 degrees)

 offset(x_start, y_start) The memory in the ST7789 controller is configured for a
240x320 display. When using a smaller display like a 240x240 or 135x240, an offset
needs to be added to the x and y parameters so that the pixels are written to the
memory area corresponding to the visible display. The offsets may need to be adjusted
when rotating the display.

For example, the TTGO-TDisplay is 135x240 and uses the following offsets.

Rotation x_start y_start

0 52 40

1 40 53

2 53 40

3 40 52

When the rotation method is called, the driver will adjust the offsets for a 135x240 or
240x240 display. Your display may require using different offset values; if so, use
the offset method after rotation to set the offset values.
The values needed for a particular display may not be documented and may require
some experimentation to determine the correct values. One technique is to draw a box
the same size as the display and then make small changes to the offsets until the
display looks correct. See the cfg_helper.py program in the examples folder for more
information.

The module exposes predefined colors: BLACK, BLUE, RED, GREEN, CYAN, MAGENTA, YELLOW,
and WHITE

Scrolling

The st7789 display controller contains a 240 by 320-pixel frame buffer used to store the pixels
for the display. For scrolling, the frame buffer consists of three separate areas; The (tfa) top
fixed area, the (height) scrolling area, and the (bfa) bottom fixed area. The tfa is the upper
portion of the frame buffer in pixels not to scroll. The height is the center portion of the
frame buffer in pixels to scroll. The bfa is the lower portion of the frame buffer in pixels not
to scroll. These values control the ability to scroll the entire or a part of the display.
For displays that are 320 pixels high, setting the tfa to 0, height to 320, and bfa to 0 will
allow scrolling of the entire display. You can set the tfa and bfa to a non-zero value to scroll
a portion of the display. tfa + height + bfa = should equal 320, otherwise the scrolling mode
is undefined.

Displays less than 320 pixels high, the tfa, height, and bfa will need to be adjusted to
compensate for the smaller LCD panel. The actual values will vary depending on the
configuration of the LCD panel. For example, scrolling the entire 135x240 TTGO T-Display
requires a tfa value of 40, height value of 240, and bfa value of 40 (40+240+40=320)
because the T-Display LCD shows 240 rows starting at the 40th row of the frame buffer,
leaving the last 40 rows of the frame buffer undisplayed.
Other displays like the Waveshare Pico LCD 1.3 inch 240x240 display require the tfa set to
0, height set to 240, and bfa set to 80 (0+240+80=320) to scroll the entire display. The Pico
LCD 1.3 shows 240 rows starting at the 0th row of the frame buffer, leaving the last 80 rows
of the frame buffer undisplayed.
The vscsad method sets the (VSSA) Vertical Scroll Start Address. The VSSA sets the line in
the frame buffer that will be the first line after the tfa.
The ST7789 datasheet warns:

The value of the vertical scrolling start address is absolute (with reference to
the frame memory),
it must not enter the fixed area (defined by Vertical Scrolling Definition,
otherwise undesirable
image will be displayed on the panel.

 vscrdef(tfa, height, bfa) Set the vertical scrolling parameters.
tfa is the top fixed area in pixels. The top fixed area is the upper portion of the display
frame buffer that will not be scrolled.
height is the total height in pixels of the area scrolled.
bfa is the bottom fixed area in pixels. The bottom fixed area is the lower portion of the
display frame buffer that will not be scrolled.

 vscsad(vssa) Set the vertical scroll address.
vssa is the vertical scroll start address in pixels. The vertical scroll start address is the
line in the frame buffer will be the first line shown after the TFA.

Helper functions

 color565(r, g, b)

Pack a color into 2-bytes rgb565 format

 map_bitarray_to_rgb565(bitarray, buffer, width, color=WHITE,
bg_color=BLACK)
Convert a bitarray to the rgb565 color buffer suitable for blitting. Bit 1
in bitarray is a pixel with color and 0 - with bg_color.

